(%i1) eq: y = log(x);\[\mathtt{(\textit{%o}_{1})}\quad y=\log x\]
(%i2) eq1: exp(lhs(eq)) = exp(rhs(eq));\[\mathtt{(\textit{%o}_{2})}\quad e^{y}=x\]
log(x) and exp(x)The objective of this lab is to deepen understanding of the differentiation of logarithmic and exponential functions, using both manual calculations and symbolic computation with Maxima. Students will:
By the end of this lab, students will have a comprehensive understanding of the differentiation of logarithmic and exponential functions, proficiency in using Maxima for symbolic computation, and enhanced problem-solving skills in calculus.
(%i1) eq: y = log(x);\[\mathtt{(\textit{%o}_{1})}\quad y=\log x\]
(%i2) eq1: exp(lhs(eq)) = exp(rhs(eq));\[\mathtt{(\textit{%o}_{2})}\quad e^{y}=x\]
(%i3) depends(y,x);\[\mathtt{(\textit{%o}_{3})}\quad \left[ y\left(x\right) \right] \]
(%i4) eq2: diff(eq1,x);\[\mathtt{(\textit{%o}_{4})}\quad e^{y}\,\left(\frac{d}{d\,x}\,y\right)=1\]
(%i5) eq3: solve(eq2,'diff(y,x));\[\mathtt{(\textit{%o}_{5})}\quad \left[ \frac{d}{d\,x}\,y=e^ {- y } \right] \]
from eq1 we know who is \(e^y \cdots\)
(%i6) eq4: lhs(first(eq3))=1/x;\[\mathtt{(\textit{%o}_{6})}\quad \frac{d}{d\,x}\,y=\frac{1}{x}\]
(%i7) diff(log(x),x,1);\[\mathtt{(\textit{%o}_{7})}\quad \frac{1}{x}\]
(%i8) eq: y = b^(x);\[\mathtt{(\textit{%o}_{8})}\quad y=b^{x}\]
(%i9) eq1: log(lhs(eq)) = log(rhs(eq) );\[\mathtt{(\textit{%o}_{9})}\quad \log y=\log b\,x\]
(%i10) depends(y,x);\[\mathtt{(\textit{%o}_{10})}\quad \left[ y\left(x\right) \right] \]
(%i11) eq2: diff(eq1,x);\[\mathtt{(\textit{%o}_{11})}\quad \frac{\frac{d}{d\,x}\,y}{y}=\log b\]
(%i12) eq3: solve(eq2,'diff(y,x));\[\mathtt{(\textit{%o}_{12})}\quad \left[ \frac{d}{d\,x}\,y=\log b\,y \right] \]
from eq we know who is \(y\cdots\)
(%i13) eq4: lhs(first(eq3))=log(b)*b^x;\[\mathtt{(\textit{%o}_{13})}\quad \frac{d}{d\,x}\,y=b^{x}\,\log b\]
(%i14) diff(b^x,x,1);\[\mathtt{(\textit{%o}_{14})}\quad b^{x}\,\log b\]
(%i15) eq: y =(x^2+1)*%e^x/(x^2+4);\[\mathtt{(\textit{%o}_{15})}\quad y=\frac{\left(x^2+1\right)\,e^{x}}{x^2+4}\]
(%i16) eq2: log(eq);\[\mathtt{(\textit{%o}_{16})}\quad \log y=\log \left(\frac{\left(x^2+1\right)\,e^{x}}{x^2+4}\right)\]
(%i17) eq3: eq2,logexpand=super;\[\mathtt{(\textit{%o}_{17})}\quad \log y=-\log \left(x^2+4\right)+\log \left(x^2+1\right)+x\]
(%i18) eq4: diff(eq3,x);\[\mathtt{(\textit{%o}_{18})}\quad \frac{\frac{d}{d\,x}\,y}{y}=-\left(\frac{2\,x}{x^2+4}\right)+\frac{2\,x}{x^2+1}+1\]
(%i19) eq5: solve(eq4,'diff(y,x));\[\mathtt{(\textit{%o}_{19})}\quad \left[ \frac{d}{d\,x}\,y=\frac{\left(x^4+5\,x^2+6\,x+4\right)\,y}{x^4+5\,x^2+4} \right] \]
Cell -> Insert Image).Shift+Enter in each code chunk.Ctrl+R.FINAL_Lab5_Calc1_YOURLASTNAME_mmddyy.wxmx.)pictures need to be in the same folder of your .wxmx file↩︎